Designing and Tuning for All-Flash Ceph RBD Storage

Ceph Days NYC 2024 April 26, 2024

Tyler Stachecki Cloud Infrastructure

TechAtBloomberg.com

© 2024 Bloomberg Finance L.P. All rights reserved.

Bloom Iberg

neering

Designing for Scale

Bloomberg

© 2024 Bloomberg Finance L.P. All rights reserved.

Engineering

Designing for Scale

- Our experience with OpenStack and Ceph dates all the way back to 2013 (Essex and Giant, respectively)
- Design goals: Large clusters and dense, power-efficient compute and storage — ~22 OSD/servers, CPU overcommit on hypervisors
- First foray into Ceph and OpenStack taught us a lot of valuable lessons... most importantly, that L2 networks **do not scale** to many thousands of of VMs and are **hard to debug**; lots of weird interoperability issues between different vendors
- In 2018, we began re-architecting our cloud and network...

Designing for Scale: Pure L3 fabrics

- Pure, BGP-based IP fabric with Layer 3 routing all the way down to the host for fast re-convergence on failure, stretched routing domains, no subnet constraints for tenants
- Redundancy and maximal use of links achieved through BGP and ECMP
- Multiple, disparate planes, each capable of >>1 Tbps of traffic

Bloomberg

naineerin

TechAtBloomberg.com

Designing for Scale: Pure L3 fabrics

- Formatted and rebuilt all ~20K of our production OSDs when upgrading to Quincy: the network made it possible
- L3 fabric unifies disparate networks (control, data, storage planes, ...) usually prominent in VM+RBD deployments, thus allowing for either fewer links or more available bandwidth
- Ancillary benefits incl. making rack/host movement in the data center more trivial

TechAtBloomberg.com

© 2024 Bloomberg Finance L.P. All rights reserved.

aineerin

Bloomberg

© 2024 Bloomberg Finance L.P. All rights reserved.

Engineering

• In 2022-2023, we underwent an initiative to renovate our Ceph clusters running RBD workloads...

TechAtBloomberg.com

• In 2022-2023, we underwent an initiative to renovate our Ceph clusters running RBD workloads...

TechAtBloomberg.com

• In 2022-2023, we underwent an initiative to renovate our Ceph clusters running RBD workloads...

Bloomberg

Inaineerinc

TechAtBloomberg.com

- Started setting up benchmarks on our lab cluster
 - Metrics shown are not indicative of performance figures of our production systems
 - 120 RBD clients running fio, 330 OSDs, 2x25Gbps networking
 - Different r/w mixes (0/100, 100/0, 70/30), block sizes, queue depths, IOPS limits...

- Early on, we identified a big problem with our benchmarking setup:
 - 4K, 1QD Read: ~186K IOPS (**5% run-to-run variance**)
 - 64K, 16QD Write: ~150K IOPS (**10% run-to-run-variance**)

Bloomberg

naineerinc

- Do not forget to turn off scrubbing when benchmarking...
- But, do not set it 'off' indefinitely either

Bloomberg

Engineering

TechAtBloomberg.com

• Why are some cores so overloaded compared to others?

TechAtBloomberg.com

- Why are some cores so overloaded compared to others?
- Change NUMA setting in NIC driver from local cores (default) to local threads

• numastat:

	node0	node1	node2	node3
numa_hit	881983537	888572582	745775975	32314773050
numa_miss	0	12848350	6769274	415898270
numa_foreign	117258094	172283056	145974729	0
interleave_hit	25851	26008	25827	25999
local_node	881974471	888538666	745745346	32314760894
other_node	9066	12882266	6799903	415910359

• numastat:

	node0	node1	node2	node3
numa_hit	881983537	888572582	745775975	32314773050
numa_miss	0	12848350	6769274	415898270
numa_foreign	117258094	172283056	145974729	0
interleave_hit	25851	26008	25827	25999
local_node	881974471	888538666	745745346	32314760894
other_node	9066	12882266	6799903	415910359

- Eureka: we were swapping in production because some zones were starving for memory and reacting accordingly!
- Disabling swap is the wrong thing to do: kernel will still page out (and likely more aggressively with swap disabled), leading to lots of page churning and memory accesses spilling into other NUMA nodes

TechAtBloomberg.com

Bloomberg Engineering

• Intra-chiplet latency: 20-30ns

TechAtBloomberg.com

© 2024 Bloomberg Finance L.P. All rights reserved.

("AMD Epyc 7702 ES" by Fritzchens Fritz licensed under CC0 1.0 DEED) Bloomberg

- Intra-chiplet latency: 20-30ns
- Adjacent-chiplet latency: 80-90ns

TechAtBloomberg.com

© 2024 Bloomberg Finance L.P. All rights reserved.

("AMD Epyc 7702 ES" by Fritzchens Fritz licensed under CC0 1.0 DEED)

Engineering

- Intra-chiplet latency: 20-30ns
- Adjacent-chiplet latency: 80-90ns
- Chiplet across I/O die: 110-120ns

© 2024 Bloomberg Finance L.P. All rights reserved.

("AMD Epyc 7702 ES" by Fritzchens Fritz licensed under CC0 1.0 DEED)

- Intra-chiplet latency: 20-30ns
- Adjacent-chiplet latency: 80-90ns
- Chiplet across I/O die: 110-120ns
- Chiplet across package: ~200ns

Enaineerina

- Intra-chiplet latency: 20-30ns
- Adjacent-chiplet latency: 80-90ns
- Chiplet across I/O die: 110-120ns
- Chiplet across package: ~200ns
- Up to ~5x latency in a 1P system
- Up to ~10x latency in a 2P system

ingineering

- Intra-chiplet latency: 20-30ns
- Adjacent-chiplet latency: 80-90ns
- Chiplet across I/O die: 110-120ns
- Chiplet across package: ~200ns
- Up to ~5x latency in a 1P system
- Up to ~10x latency in a 2P system
- Most HW vendors "hide" the chiplet-level topology (8 NUMA zones) from the OS by default and only show 4 NUMA zones!

Bloomberg

naineerina

("AMD Epyc 7702 ES" by Fritzchens Fritz licensed under CC0 1.0 DEED)

- Kernel does not know how to optimally configure multi-process workloads like Ceph
- Our Ceph block servers use a systemd service shim to configure Ceph with a-priori knowledge:

```
$ cat /etc/systemd/system/ceph-osd@.service.d/override.conf
[Service]
ExecStart=
ExecStart=/usr/bin/bbcephtool exec_osd -f --cluster ${CLUSTER} --id %i --setuser ceph --setgroup ceph
```

- bbcephtool probes the system for *all* OSDs and performs global scheduling
- It instructs the kernel to assign *this* OSD to a particular chiplet in order to leverage the locality and restricted coherence domain of modern chiplet-based microarchitectures

Before:

	node0	node1	node2	node3
numa_hit	881983537	888572582	745775975	32314773050
numa_miss	0	12848350	6769274	415898270
<pre>numa_foreign</pre>	117258094	172283056	145974729	0
interleave_hit	25851	26008	25827	25999
local_node	881974471	888538666	745745346	32314760894
other_node	9066	12882266	6799903	415910359
After:				
	node0	node1	node2	node3
numa_hit	45697885068	818961266817	57096939504	60297664855
numa_miss	723914	4654022	27846460	407840
numa_foreign	4629624	27868400	387372	746840
interleave_hit	17523	17106	17532	17094
local_node	45697875953	818938581714	57096806186	60297320431
other_node	797371	4867960	27951674	872478

TechAtBloomberg.com

• Number of context switches on a production host as we deploy the changes...

• Remember that variance we saw in our lab cluster before?

	Before Tuning	After Tuning
4K, 1QD Read IOPS	186K (5% variance)	215K (<1% variance)
64K, 16QD Write IOPS	150K (10% variance)	181K (~2.5% variance)

• NUMA tuning's purpose is not only memory latency:

Bloomberg

Inaineerinc

TechAtBloomberg.com

- Have a solid understanding of what you are changing and why Do not make reactionary decisions
- NUMA tuning is quintessential for consistent performance in deployments targeting a dense number of OSDs/host
- Look at your BIOS settings to see if you are forgoing "sub-" NUMA optimizations; you probably are, unless you looked already

Bloomberg

naineerinc

Hey, we saw this, too!

"That's when I noticed that we were not, in fact, building RocksDB with the correct compile flags. It's not clear how long that's been going on..." – <u>ceph.io</u> <u>blog post</u>, Jan 19, 2024

Hey, we saw this, too!

• "That's when I noticed that we were not, in fact, building RocksDB with the correct compile flags. It's not clear how long that's been going on..."

– <u>ceph.io blog post</u>, Jan 19, 2024

Stachecki (ts achecki) wrote on 2020-09-10:	0
Checked out ceph-15.2.3 source on a up-to-date focal VM.	
When running dpkg-buildpackage, CMakeCache.txt gets generated as expected. However, the generated CMAKE_BUILD_TYPE is "N	None".
A bit odd, but going a step further, one can grep for CMAKE_C_FLAGS in that same file and see something to the effect of CMAKE_C_FLAGS_DEBUG:STRING= <sensible builds="" compiler="" debug="" for="" settings=""> CMAKE_C_FLAGS_NONE:STRING=</sensible>	f:
 CMAKE_C_FLAGS_RELWITHDEBINFO:STRING= <sensible builds="" compiler="" for="" release="" settings=""></sensible>	
It seems, though, that since "None" is used, all of those are actually ignored and CMAKE_C_FLAGS:STRING= <compiler dpkg-buildpackage="" flags="" from=""> is used</compiler>	

TechAtBloomberg.com

Hey, we saw this, too!

• "That's when I noticed that we were not, in fact, building RocksDB with the correct compile flags. It's not clear how long that's been going on..."

– <u>ceph.io blog post</u>, Jan 19, 2024

- (oops... Bloomberg had known about this, and we really should have made the upstream contributions to fix it)
- Hopefully, today, we will make up for that by sharing some of the findings we have discovered since then... and share more going forward

© 2024 Bloomberg Finance L.P. All rights reserved.

Engineering

- Your cluster is only as fast as your slowest OSD
- In an all-flash cluster, if you have a sluggish OSD, this becomes especially noticeable!
- Sometimes, the slowest OSD right now is a "quick" OSD just shortly later (examples to come)
- Telemetry can put you in front of what's slow *right now*
- Fixing what's infrequently very slow improves your worst-case scenarios

- Your cluster is only as fast as your slowest OSD
- In an all-flash cluster, if you have a sluggish OSD, this becomes especially noticeable!
- Sometimes, the slowest OSD right now is a "quick" OSD just shortly later (examples to come)
- Telemetry can put you in front of what's slow *right now*
- Fixing what's infrequently very slow improves your worst-case scenarios
- Your "worst case" is what your users really care about

- Before we "pick" on Ceph, let's first walk through a mistake we made ourselves
- There's a popular RocksDB setting online that looks similar to this:

```
default['bcpc']['ceph']['bluestore_rocksdb_options'] = [
    'compression=kNoCompression',
    'max_write_buffer_number=4',
    'min_write_buffer_number_to_merge=1',
    'recycle_log_file_num=4',
    'write_buffer_size=268435456',
    'writeable_file_max_buffer_size=0',
    'compaction_readahead_size=2097152',
    'max_background_compactions=4',
]
```

• Similar settings appear in multiple vendor whitepapers, online searches, ... and actually work quite well for Ceph versions from the era for which the setting was published

- Then came RocksDB column families (a good thing!)
- ... but they necessitate an additional option to keep WAL sizes at sane levels (#35277)

~ ·‡	✓ ♀ 2 ■ src/common/options.cc □					
		00 -4413,7 +4413,7 00 std::vector <option> get_global_options() {</option>				
4413	4413	.set_description("max duration to force deferred submit"),				
4414	4414					
4415	4415	Option("bluestore_rocksdb_options", Option::TYPE_STR, Option::LEVEL_ADVANCED)				
4416		-				
		.set_default("compression=kNoCompression,max_write_buffer_number=4,min_write_buffer_numb				
		ion_readahead_size=2097152,max_background_compactions=2")				
	4416	+				
		.set_default("compression=kNoCompression,max_write_buffer_number=4,min_write_buffer_numb				
		ion_readahead_size=2097152,max_background_compactions=2,max_total_wal_size=1073741824")				
4417	4417	.set_description("Rocksdb options"),				
4418	4418					
4419	4419	Option("bluestore_rocksdb_cf", Option::TYPE_BOOL, Option::LEVEL_ADVANCED)				
+						

Bloomberg

Engineering

TechAtBloomberg.com

- Then came RocksDB column families (a good thing!)
- ... but they necessitate an additional option to keep WAL sizes at sane levels (#<u>35277</u>)
- without max_total_wal_size being appended to your RocksDB settings, you will experience
 insufferably bad latencies when OSDs need to compact WALs (that grow to ~100GB...)
- The setting is not additive or a default, so without specifying it explicitly as part of your overridden RocksDB options, your cluster will suffer
- In most cases, the effects of not including the setting will take >1d to manifest

- Extreme case of this: once in a blue moon on a specific platform, we see hardware failures that manifest as missed interrupts from the NVMe. The IOP is then polled and completes.
- NVMe timeout in Linux defaults to... what?

\$ cat /sys/module/nvme_core/parameters/io_timeout
30

- After 30 seconds, the kernel polls the NVMe to say hey... about that I/O access...
- If this keeps happening, Ceph is self-healing and marks the OSD out, right?

- Extreme case of this: once in a blue moon on a specific platform, we see hardware failures that manifest as missed interrupts from the NVMe. The IOP is then polled and completes.
- NVMe timeout in Linux defaults to... what?

\$ cat /sys/module/nvme_core/parameters/io_timeout
30

- After 30 seconds, the kernel polls the NVMe to say hey... about that I/O access...
- If this keeps happening, Ceph is self-healing and marks the OSD out, right?
- ... right?

© 2024 Bloomberg Finance L.P. All rights reserved

\$ sudo ceph daemon osd.X config get osd_op_thread_suicide_timeout | jq -r .osd_op_thread_suicide_timeout 150 TechAtBloomberg.com

- Different case: Let us look at an outlier in a cluster of 4K+ OSDs & >10K+ RADOS clients
- perf top -p 66111

Samples:	28K of event 'cycles',	4000 Hz, Event count (approx.): 6274841861 lost: 0/0 drop: 0/0
Overhead	Shared Object	Symbol
19.09%	ceph-osd	[.] crc32_iscsi_00
3.13%	[kernel]	[k] copy_user_generic_string
2.70%	libtcmalloc.so.4.5.9	[.] operator new[]
1.65%	[kernel]	[k] nft_do_chain
0.88%	[kernel]	[k] native_write_msr
0.85%	libtcmalloc.so.4.5.9	[.] operator delete[]
0.84%	libtcmalloc.so.4.5.9	[.] tcmalloc::CentralFreeList::FetchFromOneSpans
0.80%	[kernel]	[k] clear_page_rep
0.80%	libtcmalloc.so.4.5.9	[.] tcmalloc::ThreadCache::ReleaseToCentralCache
0.79%	[kernel]	[k] iommu_v1_map_page
0.76%	ceph-osd	[.] rocksdb::InlineSkipList <rocksdb::memtablerep::keycomparator const&="">::R</rocksdb::memtablerep::keycomparator>
0.67%	[kernel]	[k] memset
0 / 70/	libe ee ([] stand mutay lask

Bloomberg

naineerinc

TechAtBloomberg.com

- Different case: Let us look at an outlier in a cluster of 4K+ OSDs & >10K+ RADOS clients
- perf top -p 66111

Samples:	28K of event 'cycles',	4000 Hz _ Event count (approx.): 6274841861 lost: 0/0 drop: 0/0
overhead	Shared Object	symbol symbol
19.09%	ceph-osd	[.] crc32_iscsi_00
3.13%	[kernel]	[k]_copy_user_generic_string
2.70%	libtcmalloc.so.4.5.9	[.] operator new[]
1.65%	[kernel]	[k] nft_do_chain
0.88%	[kernel]	[k] native_write_msr
0.85%	libtcmalloc.so.4.5.9	[.] operator delete[]
0.84%	libtcmalloc.so.4.5.9	[.] tcmalloc::CentralFreeList::FetchFromOneSpans
0.80%	[kernel]	[k] clear_page_rep
0.80%	libtcmalloc.so.4.5.9	[.] tcmalloc::ThreadCache::ReleaseToCentralCache
0.79%	[kernel]	[k] iommu_v1_map_page
0.76%	ceph-osd	[.] rocksdb::InlineSkipList <rocksdb::memtablerep::keycomparator const&="">::R</rocksdb::memtablerep::keycomparator>
0.67%	[kernel]	[k] memset
0 (70/	libe on (C] stand without look

Bloomberg

naineerina

TechAtBloomberg.com

- perf record -gp 66111 -- sleep 30; perf script > stack.out
- ./stackcollapse-perf.pl < stack.out | ./flamegraph.pl > osd.svg ٠

ingineering

TechAtBloomberg.com

• OSD thread pool was spending **43%** of it's time calculating CRCs over a 30-second period!

- Now the kicker: Let's look at this *same* process just minutes later:
- perf top -p 66111

Samples:	8K of event 'cycles',	4000 Hz, Event count (approx.): 2577042790 lost: 0/0 drop: 0/0
Overhead	Shared Object	Symbol
3.90%	libtcmalloc.so.4.5.9	[,] operator new[]
3.58%	[kernel]	[k] copy_user_generic_string
3.28%	ceph-osd	[.] crc32_iscsi_00
2 1.0%	[kernel]	[k] nft do chair
1.10%	libtcmalloc.so.4.5.9	[.] operator delete[]
1.09%	ceph-osd	[.] rocksdb::InlineSkipList <rocksdb::memtablerep::keycomparator const&="">::R</rocksdb::memtablerep::keycomparator>
0.91%	libc.so.6	[.] pthread_mutex_lock
0.86%	libtcmalloc.so.4.5.9	[.] aligned_alloc
0.82%	[kernel]	[k] native_read_msr

Bloomberg

naineerina

TechAtBloomberg.com

Bloomberg

Engineering

TechAtBloomberg.com

- ISA-L has multiple CRC32 implementations ceph uses crc32_iscsi_00
- crc32_iscsi_00: Uses CPU's native crc32 instructions
- crc32_iscsi_01: Uses pclmulqdq to vectorize folding of the message buffer

- ISA-L has multiple CRC32 implementations ceph uses crc32_iscsi_00
- crc32_iscsi_00: Uses CPU's native crc32 instructions
- crc32_iscsi_01: Uses pclmulqdq to vectorize folding of the message buffer

CPU	crc32_iscsi_00	crc32_iscsi_01
Vendor A, Server Gen 2 uArch	10241 MB/s	13500 MB/s (+31%)
Vendor A, Server Gen 3 uArch	21645 MB/s	21469 MB/s (wash)
Vendor B, Personal Laptop	14691 MB/s	21084 MB/s (+43%)
Vendor B, Low Power/Edge	2887 MB/s	3664 MB/s (+26%)

• pclmulqdq version also benefits from a smaller look-up table and hence pollutes L1D\$ less

- Do not copy ceph.conf changes from online unless you understand why and what they do!
- Adapt osd_op_thread_suicide_timeout to HDD/SSD use cases, set SSD case to something less than 30s
- Is it time to change the default CRC32 implementation?
- It is important to have time-series- based telemetry to identify issues that come and go

Thank You!

We're hiring! https://www.bloomberg.com/careers Bloomberg

TechAtBloomberg.com